• Skip to primary navigation
  • Skip to main content
  • Skip to footer
  • MARKETS & PRODUCTS
    • Markets


      Construction

      Cybersecurity

      Fixed Gas & Flame Detection

      General Industry

      Healthcare

      HVAC-R

      Oil & Gas

      Training

      Utilities

      Products


      Combustion Analysis

      Confined Space

      Connected Work

      Corporate

      Fall Protection

      Fixed Gas & Flame Detection

      Gas Analysis

      General

      Head Protection

      Heat Stress

      Leak Detection

      Portable Gas Detection

      Refrigerant Analysis

      Respiratory Protection

      Column
  • SUBSCRIBE

Improving Process Safety and Production Yield

4 Min Read | May 5, 2022

Reading Time: 4 minutesThis success story explores how an analyzer-based oxygen measurement inerting system enabled a manufacturing plant to advance process safety, improve product quality, and increase production yield.

May 5, 2022 by msasafety

Reading Time: 4 minutes

For many process engineers and manufacturers, there are two vital areas in the production cycle that require close attention; process safety and product quality. In both cases, accurately measuring and controlling oxygen levels in tanks and process vessels is paramount. This success story explores how an analyzer-based oxygen measurement inerting system enabled a manufacturing plant to advance process safety, improve product quality, and increase production yield.

DOWNLOAD THE PDF

A large international chemical manufacturer’s plant, located in Detroit, MI produces a specialty catalyst used in the automotive industry. Production requires a unique, proprietary process that introduces several components into a large bulk tank and mixes using solvents. Some of the components of the mix, including the solvent itself, are flammable, presenting the dangerous threat of combustion. Numerous mitigation techniques have been implemented, particularly a pressure inerting system, in an effort to maintain process safety. This technique used a pressure valve to control the amount of inerting gas introduced into the vessel’s head space based on pressure changes.

The goal was to speed up the mixing vessel loading process, and therefore increase catalyst production.

Although the pressure inerting system worked sufficiently for a few years, it lacked two invaluable components needed by the plant and was no longer a viable solution. First, was the need to accurately measure and document that the appropriate amount of oxygen had been removed from the headspace in order to maintain levels below the combustible threshold, thus rendering the vessel inert. Second, was the ability to modify the system to increase the flow rates of the various chemical components making up the mix. The goal was to speed up the mixing vessel loading process, and therefore increase catalyst production. Due to the success of the manufacturer’s product in the marketplace, demand had increased, and the production rate was suffering from the bottleneck created at the mixing tank.

worker in yellow gloves opening industrial process tank
Improving process safety and production yield can be effectively sought through effective use of oxygen analysis and inerting control.

Concern

Plant safety engineering had determined that in order to avoid static electricity build-up and accumulation in feed lines, the volumetric feed rate had to remain low. This rate was far lower than what the system was capable of producing from a mechanical perspective. Without accurate measurement of oxygen levels needed to maintain safety thresholds, the risk was too great to increase feed rates any further. Thus, the bottleneck was created.

Solution

Tasked with devising a technique that could remove the bottleneck and improve production yield, a group of plant engineers sought a solution. The team resolved to move forward with an oxygen analyzer-based nitrogen inerting control system. The first step in the project was to determine the maximum permitted oxygen concentration they needed to stay under, as inerting systems aim to maintain oxygen levels in the headspace of the tank below a regulated level.

The first step in the project was to determine the maximum permitted oxygen concentration they needed to stay under, as inerting systems aim to maintain oxygen levels in the headspace of the tank below a regulated level.

Proper measurement of oxygen is imperative as most data available in manufacturer’s tables used for the calculation of limiting oxidant concentration (LOC) or maximum oxidant concentration (MOC) and upper or lower flammability limits (UFL/LFL) for various chemicals compounds is empirical. This means that the data is inexact, and some margin of error can be expected. The National Fire Protection Association (NFPA) has addressed this in their guideline 69 and established safety factors that remove the uncertainties and errs on the side of safety.

NFPA 69 Standard On Explosion Prevention Systems, 2019 Edition

This standard shall cover the minimum requirements for installing systems for the prevention of explosions in enclosures that contain flammable concentrations of flammable gases, vapors, mists, dusts, or hybrid mixtures. This standard shall provide basic information for design engineers, operating personnel, and authorities having jurisdiction.

Find Out More About NFPA 69

Once a maximum oxygen concentration target was established, the team began evaluating flow rates of raw material supply lines in the system. By raising the feed rate of different lines, they established precise productivity increase allowances while maintaining oxygen below the permitted maximum. Excitement rose as the data determined that material throughput to the mixing vessel could sufficiently increase at an approximate rate of 2 ½ times without compromising safety; confirming value in the proposed introduction of a complete oxygen analysis system.

Additionally, the data generated by the oxygen analyzer can easily be fed to a PLC and stored for tracking purposes. This is invaluable for troubleshooting and documenting safety compliance when needed.

Conclusion

The use of an analyzer-based oxygen measuring inerting system proved to be a win-win for the customer. It allowed them, first and foremost, to ensure safety was always maintained by keeping oxygen levels below the necessary threshold to greatly reduce the risk of combustion. In addition, the customer achieved its goal of increasing production rates by more than double, which had a significant positive impact on their revenue. Finally, it created the opportunity to generate and document data records needed in the event of a safety audit.

MSA Gas Inerting Experts are available to help in a variety of applications. For assistance, provide project details at myBacharach.com/GAsurvey and one of our application engineers will help to optimize your process using inerting.

START YOUR TANKBLANKETING PROJECT NOW

Recommended for You

HVAC-R

How to Track Refrigerant Usage

November 12, 2024
5 Min Read
HVAC-R

Refrigerant Tracking and Compliance Software: An Overview

January 15, 2025
Watch
HVAC-R

MSA Chillgard 5000 and Bacharach Halogen Multi-Zone: Targeted Excellence in the HVAC-R Industry

February 7, 2024
3 Min Read
Gas Cylinders
HVAC-R

What is the AIM Act and what does it mean for the HVAC-R industry?

May 9, 2024
7 Min Read
Share:

Footer

MSA MISSION: That men and women may work in safety and that they, their families, and their communities may live in health throughout the world.

MSASafety.com

  • Construction
  • General Industry
  • Oil & Gas
  • HVAC-R
  • Utilities
  • Fixed Gas & Flame Detection
  • Fire Service
MSA on Facebook   MSA on X   MSA on Instagram   MSA on LinkedIn   MSA on YouTube  

Contact

  • blog@msasafety.com
  • 1-800-672-2222
  • View All Contact Info
  • Subscribe

Other MSA Blogs

  • Fire Service – The Scene
  • FieldServer – The Safety Connection

© 2024 MSA. All rights reserved.

© 2025 MSA . All rights reserved.

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT